Selasa, 16 Februari 2010

Sabtu, 13 Februari 2010

DIODA


Dalam elektronika, dioda adalah komponen aktif bersaluran dua (dioda termionik mungkin memiliki saluran ketiga sebagai pemanas). Dioda mempunyai dua elektroda aktif dimana isyarat listrik dapat mengalir, dan kebanyakan dioda digunakan karena karakteristik satu arah yang dimilikinya. Dioda varikap (VARIable CAPacitor/kondensator variabel) digunakan sebagai kondensator terkendali tegangan.

Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.

Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.

Awal mula dari dioda adalah peranti kristal Cat's Whisker dan tabung hampa (juga disebut katup termionik). Saat ini dioda yang paling umum dibuat dari bahan semikonduktor seperti silikon atau germanium.

Sejarah

Walaupun dioda kristal (semikonduktor) dipopulerkan sebelum dioda termionik, dioda termionik dan dioda kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari dioda termionik ditemukan oleh Frederick Guthrie pada tahun 1873[1] Sedangkan prinsip kerja dioda kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun[2].

Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Eccles memperkenalkan istilah dioda yang berasal dari di berarti dua, dan ode (dari ὅδος) berarti "jalur".

Prinsip kerja

Prinsip kerja dioda termionik ditemukan kembali oleh Thomas Edison pada 13 Februari 1880 dan dia diberi hak paten pada tahun 1883 (U.S. Patent 307031), namun tidak dikembangkan lebih lanjut. Braun mematenkan penyearah kristal pada tahun 1899[3]. Penemuan Braun dikembangkan lebih lanjut oleh Jagdish Chandra Bose menjadi sebuah peranti berguna untuk detektor radio.

Dioda termionik

Simbol untuk dioda tabung hampa pemanasan taklangung, dari atas kebawah adalah anoda, katoda dan filamen pemanas

Dioda termionik adalah sebuah peranti katup termionik yang merupakan susunan elektroda-elektroda di ruang hampa dalam sampul gelas. Dioda termionik pertama bentuknya sangat mirip dengan bola lampu pijar.

Dalam dioda katup termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda (Beberapa dioda menggunakan pemanasan langsung, dimana filamen wolfram berlaku sebagai pemanas sekaligus juga sebagai katoda), elektroda internal lainnya dilapisi dengan campuran barium dan strontium oksida, yang merupakan oksida dari logam alkali tanah. Substansi tersebut dipilih karena memiliki fungsi kerja yang kecil. Bahang yang dihasilkan menimbulkan pancaran termionik elektron ke ruang hampa. Dalam operasi maju, elektroda logam disebelah yang disebut anoda diberi muatan positif jadi secara elektrostatik menarik elektron yang terpancar.

Walaupun begitu, elektron tidak dapat dipancarkan dengan mudah dari permukaan anoda yang tidak terpanasi ketika polaritas tegangan dibalik. Karenanya, aliran listrik terbalik apapun yang dihasilkan dapat diabaikan.

Dalam sebagian besar abad ke-20, dioda katup termionik digunakan dalam penggunaan isyarat analog, dan sebagai penyearah pada pemacu daya. Saat ini, dioda katup hanya digunakan pada penggunaan khusus seperti penguat gitar listrik, penguat audio kualitas tinggi serta peralatan tegangan dan daya tinggi.

Dioda semikonduktor

Sebagian besar dioda saat ini berdasarkan pada teknologi pertemuan p-n semikonduktor. Pada dioda p-n, arus mengalir dari sisi tipe-p (anoda) menuju sisi tipe-n (katoda), tetapi tidak mengalir dalam arah sebaliknya.

Tipe lain dari dioda semikonduktor adalah dioda Schottky yang dibentuk dari pertemuan antara logam dan semikonduktor (sawar Schottky) sebagai ganti pertemuan p-n konvensional.

Karakteristik arus–tegangan

Karakteristik arus–tegangan dari dioda, atau kurva I–V, berhubungan dengan perpindahan dari pembawa melalui yang dinamakan lapisan penipisan atau daerah pemiskinan yang terdapat pada pertemuan p-n diantara semikonduktor. Ketika pertemuan p-n dibuat, elektron pita konduksi dari daerah N menyebar ke daerah P dimana terdapat banyak lubang yang menyebabkan elektron bergabung dan mengisi lubang yang ada, baik lubang dan elektron bebas yang ada lenyap, meninggalkan donor bermuatan positif pada sisi-N dan akseptor bermuatan negatif pada sisi-P. Daerah disekitar pertemuan p-n menjadi dimiskinkan dari pembawa muatan dan karenanya berlaku sebagai isolator.

Walaupun begitu, lebar dari daerah pemiskinan tidak dapat tumbuh tanpa batas. Untuk setiap pasangan elektron-lubang yang bergabung, ion pengotor bermuatan positif ditinggalkan pada daerah terkotori-n dan ion pengotor bermuatan negatif ditinggalkan pada daerah terkotori-p. Saat penggabungan berlangsung dan lebih banyak ion ditimbulkan, sebuah medan listrik terbentuk didalam daerah pemiskinan yang memperlambat penggabungan dan akhirnya menghentikannya. Medan listrik ini menghasilkan tegangan tetap dalam pertemuan.

Jenis-jenis dioda semikonduktor

Kemasan dioda sejajar dengan simbolnya, pita menunjukkan sisi katoda
Beberapa jenis dioda

Ada beberapa jenis dari dioda pertemuan yang hanya menekankan perbedaan pada aspek fisik baik ukuran geometrik, tingkat pengotoran, jenis elektroda ataupun jenis pertemuan, atau benar-benar peranti berbeda seperti dioda Gunn, dioda laser dan dioda MOSFET.

Dioda biasa

Beroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium. Sebelum pengembangan dioda penyearah silikon modern, digunakan kuprous oksida (kuprox)dan selenium, pertemuan ini memberikan efisiensi yang rendah dan penurunan tegangan maju yang lebih tinggi (biasanya 1.4–1.7 V tiap pertemuan, dengan banyak lapisan pertemuan ditumpuk untuk mempertinggi ketahanan terhadap tegangan terbalik), dan memerlukan benaman bahang yang besar (kadang-kadang perpanjangan dari substrat logam dari dioda), jauh lebih besar dari dioda silikon untuk rating arus yang sama.

Dioda bandangan

Dioda yang menghantar pada arah terbalik ketika tegangan panjar mundur melebihi tegangan dadal dari pertemuan P-N. Secara listrik mirip dan sulit dibedakan dengan dioda Zener, dan kadang-kadang salah disebut sebagai dioda Zener, padahal dioda ini menghantar dengan mekanisme yang berbeda yaitu efek bandangan. Efek ini terjadi ketika medan listrik terbalik yang membentangi pertemuan p-n menyebabkan gelombang ionisasi pada pertemuan, menyebabkan arus besar mengalir melewatinya, mengingatkan pada terjadinya bandangan yang menjebol bendungan. Dioda bandangan didesain untuk dadal pada tegangan terbalik tertentu tanpa menjadi rusak. Perbedaan antara dioda bandangan (yang mempunyai tegangan dadal terbalik diatas 6.2 V) dan dioda Zener adalah panjang kanal yang melebihi rerata jalur bebas dari elektron, jadi ada tumbukan antara mereka. Perbedaan yang mudah dilihat adalah keduanya mempunyai koefisien suhu yang berbeda, dioda bandangan berkoefisien positif, sedangkan Zener berkoefisien negatif.

Dioda Cat's whisker

Ini adalah salah satu jenis dioda kontak titik. Dioda cat's whisker terdiri dari kawat logam tipis dan tajam yang ditekankan pada kristal semikonduktor, biasanya galena atau sepotong batu bara[5]. Kawatnya membentuk anoda dan kristalnya membentuk katoda. Dioda Cat's whisker juga disebut dioda kristal dan digunakan pada penerima radio kristal.

[sunting] Dioda arus tetap

Ini sebenarnya adalah sebuah JFET dengan kaki gerbangnya disambungkan langsung ke kaki sumber, dan berfungsi seperti pembatas arus dua saluran (analog dengan Zener yang membatasi tegangan). Peranti ini mengizinkan arus untuk mengalir hingga harga tertentu, dan lalu menahan arus untuk tidak bertambah lebih lanjut.

Esaki atau dioda terobosan

Dioda ini mempunyai karakteristik resistansi negatif pada daerah operasinya yang disebabkan oleh quantum tunneling, karenanya memungkinkan penguatan isyarat dan sirkuit dwimantap sederhana. Dioda ini juga jenis yang paling tahan terhadap radiasi radioaktif.

Dioda Gunn

Dioda ini mirip dengan dioda terowongan karena dibuat dari bahan seperti GaAs atau InP yang mempunyai daerah resistansi negatif. Dengan panjar yang semestinya, domain dipol terbentuk dan bergerak melalui dioda, memungkinkan osilator gelombang mikro frekuensi tinggi dibuat.


SIRKUIT ELEKTRONIK

SIRKUIT ELEKTRONIK


Sirkuit elektronik adalah rangkaian listrik atau sirkuit listrik yang memakai komponen elektronika aktif seperti transistor dan sirkuit terpadu (IC chip). Rangkaian atau sirkuit elektronik bisa bersifat sangat kompleks, walaupun sirkuit ini memakai prinsip dasar yang sama seperti pada sirkuit listrik biasa. Sirkuit elektronik biasanya dikategorikan menjadi tiga bagian: rangkaian analog, rangkaian digital, dan rangkaian kombinasi di antaranya.

Rangkaian elektronik analog berkaitan dengan sinyal yang berubah secara kontinyu (halus atau sedikit demi sedikit) sesuai dengan informasi yang dikandungnya. Beberapa peralatan elektronik seperti penguat (amplifier), tuner, radio, dan televisi menggunakan sinyal analog terutama di bagian depan dan bagian akhirnya. Komponen utama dalam rangkaian elektronik analog adalah komponen pasif (seperti resistor, kapasitor, induktor, dan transformator), dan komponen aktif (seperti transistor, dioda, FET, CMOS, dll).

Pada rangkaian elektronik digital, sinyal listrik yang dipakai berubah secara diskrit (tinggi atau rendah) sesuai dengan nilai logika (1 atau 0) dari informasi yang akan diproses. Komponen elektronika yang menggunakan sinyal digital ini di antaranya adalah gerbang logika, jam digital, kalkulator, PDA (Personal Data Assistant atau komputer saku), mikroprosesor, dan komputer.

Rangkaian elektronik kombinasi mengandung kedua macam sinyal analog dan sinyal digital. Beberapa contoh rangkaian yang menggunakan kedua macam sinyal ini adalah pembanding (comparators), penghitung (pencacah atau timers), PLL, ADC (Analaog-to-Digital Converter), dan DAC (Digital-to-Analog Converter).

Earphone

EARPHONE


Earphone adalah alat yang dapat mengubah energi listrik menjadi gelombang suara. Dipakai dengan cara memasangnya disumpalkan ke dalam telinga.

Kerap kali orang bingung membedakan earphones dengan headphone atau headset. Menurut beberapa ensoklopedi, headphones mempunyai arti demikian dua earphone yang memiliki bando yang dikenakan di kepala, sementara headset memiliki tiga makna yaitu:

  • mikrofon
  • pasangan dari headphone
  • alat tambahan untuk menggunakan earphone dan pemancar di kepala.

Sejarah

Alat dengar telinga untuk telepon sebenarnya sudah ada sejak abad ke-20. Di tahun 1986, terdapat teknologi pengurangan gangguan suara dengan mengembangkan earphone untuk melindungi pendengaran pilot dari kebisingan di first non-stop around-the-world flight.

Ketika itu, juga terkenal produksi ear canal earphones dengan active noise control untuk pertama kali. Setelah itu, hanya alat sensitive e

arphone satu-satunya cara untuk mendengar sinyal audio sebelum amplifier dikembangkan.

Selama tahun 1990 dan 2000 earphones menjadi tipe yang paling digemari untuk alat musik pribadi. Dan tahun 1919,sensitive earphone

ini digunakan umumnya untuk radio. Keadaannya belum sebagus sekarang. Gangguan/ noise masih banyak dan kualitas suaranya pun masih kasar/ mentah.

Dahulu ketika kita menggunakan radio, earphones harus disambungkan ke terminal baterai yang bertegangan volt tinggi dan terminal baterai di tanah. Penggunaan koneksi listriknya pun tidak nyaman bagi pengguna karena menggagetkan.

Penerapan

Earphone umumnya tidak mahal dan didukung sebagai alat yang praktis dibawa-bawa dan menyenangkan banyak orang, tetapi earphone tidak dilengkapi dengan isolasi karena tidak dapat mengirimkan tingkat dinamika yang sama sehingga earphone lebih sering digunakan di volume suara yang tinggi. Hal ini dapat pula meningkatkan risiko tinggi akan bahaya fungsi pendengaran.

Earphone juga merupakan komponen telepon nirkabel yang tidak menggunakan kabel. Bermanfaat untuk alat mendengar.

Earphone dapat digunakan untuk hiburan seperti CD, DVD player, home theater, video games, computer, dll. Juga digunakan di portable device seperti digital audio player/ mp3 player, handphone, dll.

Earphone juga digunakan untuk di stasiun-stasiun TV sebagai alat pengantar pesan dari direktur acara/ atasan ke presenter/ kru TV lainnya/ bawahan. Sehingga komunikasi tercapai tanpa didengar pihak-pihak lain. Bisa juga di studio rekaman dengan ruang kedap suara agar tidak ada noise lain yang terdengar.

Penggunaan

Keuntungan

Dengan adanya earphone, orang-orang lebih dapat mendengarkan suara secara bebas. Bisa dengan berapapun tingkat volumenya atau mendengarkan suara apa saja, kapan saja, dan dimana saja. Privacy masing-masing individu pun terjaga.

Keuntungan lainnya adalah kedap suara. Suara dari luar tidak masuk mengganggu dan demikian pula sebaliknya. Sound isolating earphone pun sangat berperan di sini selain dari privacy.

Kerugian

Terlalu sering menggunakan atau terlalu memaksa pemakaian akan menyebabkan kerusakan gangguan pendengaran atau penurunan fungsi pendengaran atau tuli. Apalagi biasanya earphone digunakan dengan diset sekeras-kerasnya untuk ‘melawan’ noise dari luar yang biasanya kita gunakan di tempat-tempat ramai/ bising. Ini sangat berisiko tinggi.

Ketulian sudah dapat menyerang orang semakin dini. Awal-awalnya telinga yang sering menggunakan earphone tidak terasa apa-apa tetapi ketika hendak mencabut earphone, telinga terasa panas dan berdengung hebat.

Itu terjadi akibat kelelahan koklea (rumah siput), yang berperan penting dalam proses pendengaran. Kelelahan koklea yang terjadi terus-menerus dan tak segera ditangani dapat menyebabkan gangguan pendengaran menetap.

Untuk orang dengan pendengaran normal, audiogram terletak antara nol dan 20 desibel. Di atas angka itu, artinya kondisi telinga sudah tidak beres.

Hanya dapat diobati dengan terapi hiperbalik (memberi obat-obatan khusus) agar tingkat ketuliannya berkurang, tapi tak sembuh. Sebab, yang rusak adalah sel rambut pada organ telinga bagian dalam yang berfungsi menangkap rangsangan atau frekuensi suara. Bila bagian ini sudah terganggu dan rusak, tak akan bisa kembali normal.

Badan Kesehatan Dunia (WHO), Sound Hearing 2030 juga sudah memprogram untuk mengurangi kasus gangguan pendengaran dan ketulian hingga 50 persen pada 2015, dan 90 persen dalam 15 tahun berikutnya. Masalah utamanya adalah gaya hidup yang salah seperti kebiasaan penggunaan earphone.

Selain itu, jangan menggunakannya saat menyetir atau di jalan raya yang berisik. Ini akan membuat pengguna tidak mendengar suara peringatan orang/ mobil lain, dll yang kemungkinan besar menyebabkan kecelakaan. Self-awareness menurun karena pengalihan konsentrasi kita dari lingkungan sekitar dan jalan ke suara dari earphones.

Keseimbangan badan pun bisa kacau karena tekanan udaranya mempengaruhi keseimbangan badan ketika kita menggunakan earphone di jalan atau sedang menyetir. Lebih baik kita rajin membersihkan telinga dari ear wax agar tidak infeksi.

SPEAKER


SPEAKER


Pengeras suara Inggris loud speaker atau speaker saja) adalah transduser yang mengubah sinyal elektrik ke frekuensi audio (suara) dengan cara menggetarkan komponennya yang berbentuk selaput.

Dalam setiap sistem penghasil suara, penentuan kualitas suara terbaik tergantung dari speaker. Rekaman yang terbaik, dikodekan ke dalam alat penyimpanan yang berkualitas tinggi, dan dimainkan dengan deck dan pengeras suara kelas atas, tetap saja hasilnya suaranya akan jelek bila dikaitkan dengan speaker yang kualitasnya rendah. Sistem pada speaker adalah suatu komponen yang membawa sinyal elektronik, menyimpannya dalam CDs, tapes, dan DVDs, lalu mengembalikannya lagi ke dalam bentuk suara aktual yang dapat kita dengar. Dalam artikel ini, akan dijelaskan bagaimana sebuah speaker melakukan proses tersebut. Selain itu juga akan dibahas mengapa speaker dirancang berbeda-beda dan bagaimana perbedaan tersebut menimbulkan efek yang berbeda pula terhadap kualitasnya. Speaker adalah sebuah teknologi menakjubkan yang memberikan dampak yang sangat besar terhadap budaya kita. Namun disamping semua itu, sebenarnya speaker hanyalah sebuah alat yang sangat sederhana.

Speaker untuk televisi

Membuat suara

Pada dasarnya, speaker merupakan mesin penterjemah akhir, kebalikan dari mikrofon. Speaker membawa sinyal elektrik dan mengubahnya kembali menjadi getaran untuk membuat gelombang suara. Speaker menghasilkan getaran yang hampir sama dengan yang dihasilkan oleh mikrofon yang direkam dan dikodekan pada tape, CD, LP, dan lain-lain. Speaker tradisional melakukan proses ini dengan menggunakan satu drivers atau lebih.

DIAFRAGMA

Sebuah drivers memproduksi gelombang suara dengan menggetarkan cone yang fleksibel atau diafragma secara cepat. Cone tersebut biasanya terbuat dari kertas, plastik ataupun logam, yang berdempetan pada ujung yang lebih besar pada suspension. Suspension atau surround, merupakan ratusan material yang fleksibel yang menggerakkan cone, dan mengenai bingkai logam pada drivers, disebut basket.

Ujung panah pada cone berfungsi menghubungkan cone ke voice coil. Coil tersebut didempetkan pada basket oleh spider, yang merupakan sebuah cincin dari material yang fleksibel. Spider menahan coil pada posisinya sambil mendorongnya bergerak kembali dengan bebas dan begitu seterusnya.

MAGNET

Proses spaker coil bergerak, kembali ke posisi semula dan seterusnya adalah sebagai berikut. Elektromagnet diposisikan pada suatu bidang magnet yang konstan yang diciptakan oleh sebuah magnet permanen. Kedua magnet tersebut, yaitu elektromagnet dan magnet permanen, berinteraksi satu sama lain seperti dua magnet yang berhubungan pada umumnya. Kutub positif pada elektromagnet tertarik oleh kutub negatif pada bidang magnet permanen dan kutub negatif pada elektromagnet ditolak oleh kutub negatif magnet permanen. Ketika orientasi kutub elektromagnet bertukar, bertukar pula arah dan gaya tarik-menariknya. Dengan cara seperti ini, arus bolak-balik secara konstan membalikkan dorongan magnet antara voice coil dan magnet permanen. Proses inilah yang mendorong coil kembali dan begitu seterusnya dengan cepat. Sewaktu coil bergerak, ia mendorong dan menarik speaker cone. Hal tersebut menggetarkan udara di depan speaker, membentuk gelombang suara. Sinyal audio elektrik juga dapat diinterpretasikan sebagai sebuah gelombang. Frekuensi dan amplitudo dari gelombang ini, yang merepresentasikan gelombang suara asli, mendikte tingkat dan jarak pergerakan voice coil. Sehingga dapat disimpulkan bahwa frekuensi dan amplitudo dari gelombag suara diproduksi oleh diafragma.

Speaker tradisional memproduksi suara dengan cara mendorong dan menarik elektromagnet yang menyerang cone yang fleksibel. Walaupun drivers pada dasarnya memiliki konsep yang sama, namun ukuran dan kekuatan yang dimiliki berbeda-beda. Tipe-tipe dasar drivers antara lain : woofers, tweeters, dan midrange.

Woofers merupakan tipe drivers yang paling besar yang dirancang untuk menghasilkan suara dengan frekuensi rendah. Tweeters memiliki unit-unit yang lebih kecil dan dirancang untuk menghasilkan frekuensi paling tinggi. Sedangkan midrange, mampu menghasilan jarak frekuensi yang berada di tengah-tengah spektrum suara.

Untuk dapat membuat gelombang frekuansi yang lebih tinggi, diafragma drivers harus bergetar lebih cepat. Hal ini lebih sulit dilakukan dengan cone yang berukuran besar karena berarti, massa cone tersebut juga besar. Oleh sebab itu, sulit mendapatkan drivers yang kecil untuk dapat bergetar cukup lambat agar dapat menghasilkan suara dengan frekuensi sangat rendah.

Sistem crossover pada speaker elektronik

Pada prakteknya, speaker elektronik memerlukan pemisahan antara woofer dengan daerah lain secara elektronik, yaitu dengan cross over aktif. Dalam hal ini, terdapat beberapa sistem cross over, yaitu sistem dua jalur dan tiga jalur.sistem seri dan paralel.

Sistem dua jalur

Penggunaan speaker elektronik yang paling sederhana adalah sistem 2 jalur atau sistem bi-amp, yang bisa memberi hasil yang memuaskan. Keuntungannya adalah pengecilan distorsi TIM (transient intermodulation) dan bisa menyetel bass dan treble secara mandiri. Frekuensi peralihan dipilih 340 Hz (di atas frekuensi resonansi asli). Hal ini dirancang untuk penggunaan kotak speaker kecil. Bila anda menggunakan sub woofer untuk kanalbawah ini, dan harus diubah dibawah 100 Hz. Frekuensi resonansi untuk kotak lebih besar 20-40 Hz, kotak sedang 40-80 Hz, kotak kecil 80 Hz keatas.

Daya power amplifier B1 sebagai pengendali woofer dipilih sesuai kebutuhan kita. Daya woofer SP1 perlu dilebihkna dari daya amplifier, karena sistem umpan balik akan banyak menambah tenaga yang diberikan ke woofer. Untuk ruang biasa daya amplifier yang cocok 20-30 Watt. Hendaknya dipilih power amplifier yang cocok untuk penggunaan nada rendah dan mempunyai faktor damping besar. Speaker SP2 bisa menggunakan tweeter saja (tweeter dan super tweeter, mid range dan tweeter ataupun mid range dan super tweeter) dengan pemisahan konvrnsional menggunakan crossoveraktif, yang akan memberikan hasil memuaskan. Pilihan lain untuk sistem bi-amp adalah penggunaan speaker lengkap dalam kotak kecil sebagai SP2 dan sub woofer untuk kanal bawah yang terpisah.

[sunting] Sistem tiga jalur

Sistem ini mirip dengan sistem 2 jalur, namun di sini nada tengah dipisahkan dengan band pass filter. Ada beberapa kemungkinan yang bisa diambil mengenai speaker-speaker. Pilihan pertama: SP1 woofer, SP2 mid range, SP3 tweeter. Pilihan kedua : SP1 sub woofer, SP2 mid range, SP3 super tweeter (frekuensi peralihan di bawah 100 Hz dan di atas 15 KHz). Pilihan ketiga : SP1 sub woofer, SP2 speaker lengkap (woofer, mid range, tweeter dengan cross over pasif), SP3 super tweeter. Persyaratan power amplifier sama dengan sistem 2 jalur. Penyetelan P3 dilakukan melalui pendengaran pada sistem yang sudah terpasang. Mula-mula dari sisi ground diputar perlahan sampai dengungan yang menyatakan adannya osilasi. Penyetelan optimum didapat dengan memutarnya mundur sedikit dari posisi mula-mula.


Daftar merek Loudspeaker yang umumnya dikenal di Indonesia;

  • BMB
  • Altec Lansing
  • Pioneer
  • Creative
  • Visioneer
  • Sonic Gear
  • Marantz
  • Logitech
  • Kenwood
  • Genius
  • Delta
  • JBL
  • Simbadda

Rabu, 03 Februari 2010

ROBOTIKA



ROBOTIKA


Robotika adalah ilmu pengetahuan dan teknologi rekayasa robot, dan desain, manufaktur, aplikasi, dan disposisi struktural. Robotika berhubungan dengan elektronik, mekanik, dan software. Kata robot diperkenalkan kepada publik oleh penulis Ceko Karel Capek dalam bermain RUR (Rossum's Universal Robots), yang diterbitkan pada tahun 1920. Istilah "robot" diciptakan oleh Isaac Asimov dalam fiksi ilmiah 1941 cerita pendek "Pembohong!".

Kisah-kisah buatan pembantu dan para sahabat dan upaya untuk menciptakan mereka memiliki sejarah yang panjang, tapi mesin otonom sepenuhnya hanya muncul di abad ke-20. Digital pertama dioperasikan dan diprogram robot, yang Unimate, dipasang pada tahun 1961 untuk mengangkat potongan-potongan besi panas dari mesin casting mati dan menumpuk mereka. Hari ini, komersial dan industri robot digunakan secara luas melakukan pekerjaan dengan lebih murah atau lebih akurat dan dapat diandalkan daripada manusia. Mereka juga bekerja di pekerjaan yang terlalu kotor, berbahaya, atau membosankan menjadi cocok untuk manusia. Robot banyak digunakan di bidang manufaktur, perakitan, dan pengepakan; transportasi; bumi dan eksplorasi ruang angkasa; bedah; persenjataan; laboratorium penelitian; keamanan; dan produksi massal dan konsumen barang-barang industri.